Clifford Homomorphisms and Higher Spin Dirac Operators

نویسنده

  • Yasushi Homma
چکیده

We present a generalization of the Clifford action for other representations spaces of Spin(n), which is called the Clifford homomorphism. Their properties extend to the ones for the higher spin Dirac operators on spin manifolds. In particular, we have general Bochner identities for them, and an eigenvalue estimate of a Laplace type operator on any associated bundle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical harmonic polynomials for higher bundles

We give a method of decomposing bundle-valued polynomials compatible with the action of the Lie group Spin(n), where important tools are Spin(n)-equivariant operators and their spectral decompositions. In particular, the top irreducible component is realized as an intersection of kernels of these operators. 0 Introduction Spherical harmonic polynomials or spherical harmonics are polynomial solu...

متن کامل

Higher spin Dirac operators

In Clifford analysis, one studies spin-invariant differential operators on spaces of arbitrary dimension m. At the heart of the classical theory lies the well-known Dirac operator, which finds its origin in physics [5]: the Dirac equation describes the behaviour of electrons in the 4-dimensional spacetime. Our aim is to study generalizations of this operator, the so-called higher spin Dirac ope...

متن کامل

On an inductive construction of higher spin Dirac operators

In this contribution, we introduce higher spin Dirac operators, i.e. a specific class of differential operators in Clifford analysis of several vector variables, motivated by equations from theoretical physics. In particular, the higher spin Dirac operator in three vector variables will be explicitly constructed, starting from a description of the so-called twisted Rarita-Schwinger operator.

متن کامل

Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators

Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators D. Eelbode, a) T. Raeymaekers, b) and J. Van der Jeugt c) Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, G-Building, Middelheimlaan 1, 2020 Antwerpen, Belgium Clifford Research Group, Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent, Belgium Dep...

متن کامل

Generalized Dolbeault Sequences in Parabolic Geometry

In this paper, we show the existence of a sequence of invariant differential operators on a particular homogeneous model G/P of a Cartan geometry. The first operator in this sequence can be locally identified with the Dirac operator in k Clifford variables, D = (D1, . . . , Dk), where Di = P j ej · ∂ij : C ((R), S) → C((R), S). We describe the structure of these sequences in case the dimension ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000